

M.E. Olsen

IIILIOGUC

Method

Results

Flow Patterns: Test Section

Streamwise Velocity:Grid Convergence Wall Normal Velocity Grid Convergence

Conclusions

Lag Model Predictions for UFAST SBLI Flowfield

Mike Olsen¹ Randy Lillard² Brandon Oliver² Gregory Blaisdell³

¹TSA - Aerothermodynamics Branch, Space Technology Division NASA Ames Research Center ²EG-3 - Engineering Branch, Engineering Division NASA Johnson Flight Center ³School of Aeronautics and Astronautics Purdue University West Lafayette, IN

Shock Boundary Layer Interaction(SBLI) Workshop

Introduction

M.E. Olsen

Introduction

Method

Results

Patterns:
Test Section
Streamwise
Velocity:Grid
Convergence
Wall Normal
Velocity Grid
Convergence

Conclusions

Simulations of Shock Boundary Layer Interaction

Experiments:

- 3 Experiments Submitted by University of Michigan
- 1 Experiment Submitted by UFAST
- IGES files defined Experimental Geometries
- Experimental Data Given on UFAST and one U. of M. Case

Simulations:

UFAST Case Comparison Reported

Experiment

M.E. Olsen

Introduction

Method

Results

Flow Patterns: Test Section Streamwise Velocity:Grid Convergence Wall Normal Velocity Grid

Conclusions

Wind Tunnel Data obtained at IUSTI http://iusti.polytech.univ-mrs.fr/IUSTI/

Geometry – From IGES File (8° degree Case)

- 2-D Contraction, 170mm wide, 600mm Long Test section
- Height 60mm with 0.3° Boundary Layer Splay
- Origin of Experimental Profiles Assumed to be Tunnel Wall

Flow Conditions - From Readme File

- Total Pressure 50.5kPa
- Total Temp 293K
- \bullet Test Section Mach ≈ 2.25

Computational Method

M.E. Olsen

Introduction Method

Results

Patterns:
Test Section
Streamwise
Velocity:Grid
Convergence
Wall Normal
Velocity Grid
Convergence

Conclusions

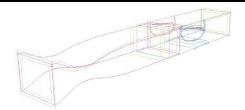
Flow Solver

- Overflow 2.0 Flow Solver Overset Grids
- Eddy viscosity Lag turbulence model AIAA 2005-101
 Also AIAA 2001-2564
- 2nd order Central Difference with Matrix Dissipation AIAA 2001-2664

Physical Boundary Conditions

- Full 3D UFAST Geometry Modelled Shock Generator Spanned Tunnel
- Transition Assumed in Stagnation Chamber
- Downstream Boundary Condition: Very Low Pressure
- Adiabatic Viscous Walls

Grid System: 8 Overset Zones, 53M Grid Points


M.E. Olsen

Introduction

Method

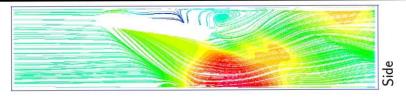
Results

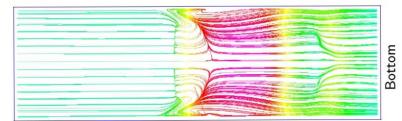
Flow
Patterns:
Test Section
Streamwise
Velocity:Grid
Convergence
Wall Normal
Velocity Grid
Convergence

- 6 Viscous Tunnel Grids: All 129 Points Wall Normal
 - Contraction/Nozzle (-471mm ≤ x ≤ 145mm)
 469 Circumferential x 265 Streamwise
 - Test Section (35mm ≤ x ≤ 600mm)
 513 Circumferential x 193 Streamwise
 - Shock Generator (3 Grids)
 353 points(periodic) around, 121 spanwise
 - Interaction(275mm $\le x \le 386$ mm, -62mm $\le y \le -44$ mm) 257 Streamwise x 145 Spanwise
- 2 Tunnel Core Grids
 - Ocontraction/Nozzle 265 Streamwise x 59 Spanwise x 165 Vertical
 - Test Section 465 Streamwise x 115 Spanwise x 145 Vertical

Wall Flowfield(Oil Flow Colored by Pressure)

M.E. Olsen


Introduction


Method

Results

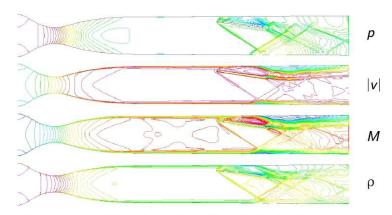
Flow Patterns: Test Section

Streamwise Velocity:Grid Convergence Wall Normal Velocity Grid Convergence

- Sidewall Boundary Layer Separation Extensive
- Lower Wall Shows Separation, Reattachment and Expansion off End of Shock Generator

Midplane Flowfield

M.E. Olsen


Introduction

Method

Results

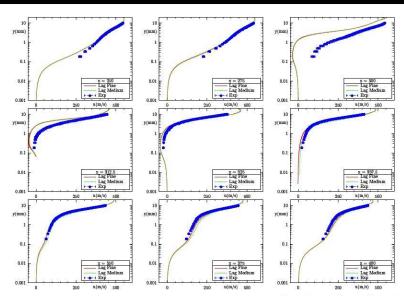
Flow Patterns: Test Section

Streamwise Velocity:Grid Convergence Wall Normal Velocity Grid Convergence

- Complicated Flow along Top Side of Shock Generator
- Expansion at End of Shock Generator Impacts Lower Wall Well After Reattachment(Effects Seen in Wall Oilflow)

Grid Convergence: u velocity profiles

M.E. Olsen


Introduct

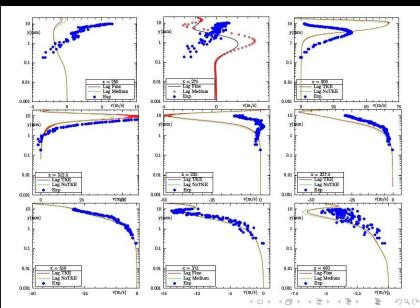
Method

Results

Flow Patterns: Test Section Streamwise Velocity:Grid

Convergence Wall Normal Velocity Grid Convergence

Grid Convergence: wall normal velocity profiles


M.E. Olsen

Introduct

Method

Results

Flow Patterns: Test Section Streamwise Velocity:Grid Convergence Wall Normal Velocity Grid Convergence

Conclusions

M.E. Olsen

Introduction

Method

Results

Flow
Patterns:
Test Section
Streamwise
Velocity:Grid
Convergence
Wall Normal
Velocity Grid
Convergence

Conclusions

Conclusions:

- Reasonable Prediction of Separation Location
- Wall Normal Velocity Predictions Better Downstream of Separation
- Complicated Sidewall Flowfield

Plans:

- Comparison with Other Turbulence Models
- U of M Case Simulations